Bernhard RiemannW
Bernhard Riemann

Georg Friedrich Bernhard Riemann was a German mathematician who made contributions to analysis, number theory, and differential geometry. In the field of real analysis, he is mostly known for the first rigorous formulation of the integral, the Riemann integral, and his work on Fourier series. His contributions to complex analysis include most notably the introduction of Riemann surfaces, breaking new ground in a natural, geometric treatment of complex analysis. His famous 1859 paper on the prime-counting function, containing the original statement of the Riemann hypothesis, is regarded as one of the most influential papers in analytic number theory. Through his pioneering contributions to differential geometry, Riemann laid the foundations of the mathematics of general relativity. He is considered by many to be one of the greatest mathematicians of all time.

Cauchy–Riemann equationsW
Cauchy–Riemann equations

In the field of complex analysis in mathematics, the Cauchy–Riemann equations, named after Augustin Cauchy and Bernhard Riemann, consist of a system of two partial differential equations which, together with certain continuity and differentiability criteria, form a necessary and sufficient condition for a complex function to be complex differentiable, that is, holomorphic. This system of equations first appeared in the work of Jean le Rond d'Alembert. Later, Leonhard Euler connected this system to the analytic functions. Cauchy (1814) then used these equations to construct his theory of functions. Riemann's dissertation on the theory of functions appeared in 1851.

Grothendieck–Riemann–Roch theoremW
Grothendieck–Riemann–Roch theorem

In mathematics, specifically in algebraic geometry, the Grothendieck–Riemann–Roch theorem is a far-reaching result on coherent cohomology. It is a generalisation of the Hirzebruch–Riemann–Roch theorem, about complex manifolds, which is itself a generalisation of the classical Riemann–Roch theorem for line bundles on compact Riemann surfaces.

On the Number of Primes Less Than a Given MagnitudeW
On the Number of Primes Less Than a Given Magnitude

"Ueber die Anzahl der Primzahlen unter einer gegebenen Grösse" is a seminal 9-page paper by Bernhard Riemann published in the November 1859 edition of the Monatsberichte der Königlich Preußischen Akademie der Wissenschaften zu Berlin.

Removable singularityW
Removable singularity

In complex analysis, a removable singularity of a holomorphic function is a point at which the function is undefined, but it is possible to redefine the function at that point in such a way that the resulting function is regular in a neighbourhood of that point.

Riemann (crater)W
Riemann (crater)

Riemann is a lunar impact crater that is located near the northeastern limb of the Moon, and can just be observed edge-on when libration effects bring it into sight. It lies to the east-northeast of the large walled plain Gauss. To the southeast, beyond sight on the far side, is the crater Vestine.

Riemann curvature tensorW
Riemann curvature tensor

In the mathematical field of differential geometry, the Riemann curvature tensor or Riemann–Christoffel tensor is the most common way used to express the curvature of Riemannian manifolds. It assigns a tensor to each point of a Riemannian manifold, that measures the extent to which the metric tensor is not locally isometric to that of Euclidean space. The curvature tensor can also be defined for any pseudo-Riemannian manifold, or indeed any manifold equipped with an affine connection.

Riemann hypothesisW
Riemann hypothesis

In mathematics, the Riemann hypothesis is a conjecture that the Riemann zeta function has its zeros only at the negative even integers and complex numbers with real part 1/2. Many consider it to be the most important unsolved problem in pure mathematics. It is of great interest in number theory because it implies results about the distribution of prime numbers. It was proposed by Bernhard Riemann (1859), after whom it is named.

Riemann integralW
Riemann integral

In the branch of mathematics known as real analysis, the Riemann integral, created by Bernhard Riemann, was the first rigorous definition of the integral of a function on an interval. It was presented to the faculty at the University of Göttingen in 1854, but not published in a journal until 1868. For many functions and practical applications, the Riemann integral can be evaluated by the fundamental theorem of calculus or approximated by numerical integration.

Riemann mapping theoremW
Riemann mapping theorem

In complex analysis, the Riemann mapping theorem states that if U is a non-empty simply connected open subset of the complex number plane C which is not all of C, then there exists a biholomorphic mapping f from U onto the open unit disk :|z|<1\}.}

Riemann solverW
Riemann solver

A Riemann solver is a numerical method used to solve a Riemann problem. They are heavily used in computational fluid dynamics and computational magnetohydrodynamics.

Riemann sphereW
Riemann sphere

In mathematics, the Riemann sphere, named after Bernhard Riemann, is a model of the extended complex plane, the complex plane plus a point at infinity. This extended plane represents the extended complex numbers, that is, the complex numbers plus a value ∞ for infinity. With the Riemann model, the point "∞" is near to very large numbers, just as the point "0" is near to very small numbers.

Riemann sumW
Riemann sum

In mathematics, a Riemann sum is a certain kind of approximation of an integral by a finite sum. It is named after nineteenth century German mathematician Bernhard Riemann. One very common application is approximating the area of functions or lines on a graph, but also the length of curves and other approximations.

Riemann surfaceW
Riemann surface

In mathematics, particularly in complex analysis, a Riemann surface is a one-dimensional complex manifold. These surfaces were first studied by and are named after Bernhard Riemann. Riemann surfaces can be thought of as deformed versions of the complex plane: locally near every point they look like patches of the complex plane, but the global topology can be quite different. For example, they can look like a sphere or a torus or several sheets glued together.

Riemann Xi functionW
Riemann Xi function

In mathematics, the Riemann Xi function is a variant of the Riemann zeta function, and is defined so as to have a particularly simple functional equation. The function is named in honour of Bernhard Riemann.

Riemann zeta functionW
Riemann zeta function

The Riemann zeta function or Euler–Riemann zeta function, ζ(s), is a function of a complex variable s that analytically continues the sum of the Dirichlet series

Riemann–Lebesgue lemmaW
Riemann–Lebesgue lemma

In mathematics, the Riemann–Lebesgue lemma, named after Bernhard Riemann and Henri Lebesgue, states that the Fourier transform or Laplace transform of an L1 function vanishes at infinity. It is of importance in harmonic analysis and asymptotic analysis.

Riemann–Silberstein vectorW
Riemann–Silberstein vector

In mathematical physics, in particular electromagnetism, the Riemann–Silberstein vector or Weber vector named after Bernhard Riemann, Heinrich Martin Weber and Ludwik Silberstein, is a complex vector that combines the electric field E and the magnetic field B.

Riemann's minimal surfaceW
Riemann's minimal surface

In differential geometry, Riemann's minimal surface is a one-parameter family of minimal surfaces described by Bernhard Riemann in a posthumous paper published in 1867. Surfaces in the family are singly periodic minimal surfaces with an infinite number of ends asymptotic to parallel planes, each plane "shelf" connected with catenoid-like bridges to the neighbouring ones. Their intersections with horizontal planes are circles or lines; Riemann proved that they were the only minimal surfaces fibered by circles in parallel planes besides the catenoid, helicoid and plane. They are also the only nontrivial embedded minimal surfaces in Euclidean 3-space invariant under the group generated by a nontrivial translation. It is possible to attach extra handles to the surfaces, producing higher-genus minimal surface families.

Riemannian circleW
Riemannian circle

In metric space theory and Riemannian geometry, the Riemannian circle is a great circle equipped with its great-circle distance. It is the circle equipped with its intrinsic Riemannian metric of a compact one-dimensional manifold of total length 2π, or the extrinsic metric obtained by restriction of the intrinsic metric on the sphere, as opposed to the extrinsic metric obtained by restriction of the Euclidean metric to the unit circle in the plane. Thus, the distance between a pair of points is defined to be the length of the shorter of the two arcs into which the circle is partitioned by the two points.

Riemannian geometryW
Riemannian geometry

Riemannian geometry is the branch of differential geometry that studies Riemannian manifolds, smooth manifolds with a Riemannian metric, i.e. with an inner product on the tangent space at each point that varies smoothly from point to point. This gives, in particular, local notions of angle, length of curves, surface area and volume. From those, some other global quantities can be derived by integrating local contributions.